Biologie: Grundwissen 9. Klasse (G9)

(Stand: 01.10.2025)

I. Mikroorganismen in der Biotechnologie

#	Begriff	Definition/Beschreibung
1	Mikroorganismen	= mikroskopisch kleine Lebewesen - Bakterien: Prokaryoten, ohne Zellkern - Einzeller (z.B. Pantoffeltierchen, Hefezellen): Eukaryoten, mit Zellkern
2	Aufbau einer Bakterienzelle	Geißel Zellwand Zellmembran Ringförmige DNA Zellplasma Plasmidring Membraneinstülpung Ribosomen
3	Vermehrung von Mikroorganismen	 meist ungeschlechtliche Fortpflanzung Bakterien: Zweiteilung, vorher wird Bakterien-Chromosom verdoppelt Hefezellen durch Knospung sehr schnelle Vermehrung, häufig exponentiell (Anlaufphase, exponentielle Phase, stationäre Phase, Absterbephase) feuchte und warme Umgebung beschleunigen die Vermehrung
4	Stoffwechsel bei Mikroorganismen	Die meisten Mikroorganismen sind heterotroph, d.h. sie müssen energiereiche Nährstoffe von außen aufnehmen; autotrophe Pflanzen können durch Fotosynthese selbst energiereiche Nährstoffe produzieren; aerob = mit Sauerstoff Zellatmung: - Traubenzucker + Sauerstoff → Kohlenstoffdioxid + Wasser - große Menge an Energie wird freigesetzt anaerob = ohne Sauerstoff Gärungsprozesse: - Milchsäuregärung: Traubenzucker → Milchsäure - alkoholische Gärung: Traubenzucker → Ethanol + Kohlenstoffdioxid

5	Bedeutung von	Lebensmittelhygiene
	Mikroorganismen	- Mikroorganismen können Lebensmittel verderben
		- Konservierungsmethoden: Kühlung/Einfrieren, Erhitzen, Entzug von
		Sauerstoff (Vakuumieren), Entzug von Wasser (Trocknen, Salzen,
		Zuckern)
		Biotechnologie
		- Milchsäurebakterien → Herstellung von Joghurt, Käse, Sauerkraut
		- Hefezellen → Herstellung von Wein, Bier, Brot
		Landwirtschaft
		- Konservierung von Silage (Milchsäurebakterien)
		- Biogasanlagen: Herstellung von Biogas aus Abfällen durch
		Methanbakterien

II. Genetik und Gentechnik

6	Aufbau von	Proteine (= Eiweißstoffe)
	Proteinen	- Riesenmoleküle (Makromoleküle)
		- werden aus 20 verschiedenen Aminosäure -Molekülen
		aufgebaut sind
		- Reihenfolge der Aminosäuren = Aminosäuresequenz
		- Aminosäureketten bilden durch Faltung eine komplexe 3D-
		Struktur, nur so ist das Protein funktionsfähig
		Die Aminosäure-Sequenz ist die Primärstruktur Glin Glu Pha Gly Aan Alpha- falt- blatt Sekundär- strukturen
		Hämoglobin P13- Protein Tertiärstruktur (räumliche Form) Ouelle: Mariana Ruiz Villarreal Roland Heynkes CC BY-SA 4.0
7	Aufgabe von Proteinen	 Baustoffe: z. B. für Haare (Keratin), Knochen (Kollagen) Bewegung: Aktin und Myosin in Muskelfasern Transport: Hämoglobin in roten Blutzellen Stoffwechsel: Enzyme beschleunigen Reaktionen Abwehr von Krankheitserregern: Antikörper Hormone: z.B. Insulin

8	DNA	= Desoxyribonucleinsäure Träger der genetischen Information Molekülaufbau: - Doppelhelix aus zwei Einzelsträngen - Bestehen aus: Zucker-Phosphat-Ketten - vier Basen: Adenin – Thymin und Cytosin – Guanin (A-T und G-C jeweils komplementär) Phosphorsäure Phosphorsäure Basen Adenin Guanin Thymin Cytosin Quelle: tgg-leer.de/projekte/genetik/dna2
9	Gen	= Abschnitt auf der DNA, der für ein bestimmtes Protein codiert
10	Genetischer Code	- die Basensequenz eines Gens enthält die Anleitung für die entsprechenden Aminosäuren des Proteins - drei Basen (Triplett) stehen jeweils für eine Aminosäure
11	Protein- biosynthese	Abschnitt auf DNA → mRNA → Protein Transkription Translation im Zellkern an Ribosomen Ein Gen wird in mRNA "abgeschrieben". Das mRNA-Molekül verlässt den Zellkern und bindet an die Ribosomen. Die Ribosomen "übersetzen" die Information und bauen die entsprechenden Aminosäuren zu einem Protein zusammen. Die passenden AS werden durch tRNA-Moleküle zum Ribosom gebracht.
12	Genwirkketten	mehrere Gene wirken an der Ausprägung eines Merkmals zusammen z.B. Bildung eines <mark>Blütenfarbstoffs (D)</mark>

		0-1 0-1
		Gen 1 Gen 2 Gen 3
		Enzym 1 Enzym 2 Enzym 3
		A B C D
		Edukt Zwischenprodukte Produkt
13	Replikation (= Verdopplung) der DNA	Vor jeder Zellteilung muss die DNA identisch verdoppelt werden. Zellteilung erfolgt bei Wachstum oder Regeneration von Gewebe. Prinzip: - DNA-Doppelstrang wird durch ein Enzym in Einzelstränge aufgetrennt (vgl. Reißverschluss) - an jedem "alten" Einzelstrang wird ein "neuer" komplementärer Einzelstrang synthetisiert → zwei Doppelstränge - semikonservative Replikation
14	Organisation der DNA	Prokaryoten: 1 ringförmiges DNA-Molekül + kleine Plasmide Eukaryoten:
15	Chromosomen	= verpackte DNA-Stränge
		Replikation Zentromer Ein-Chromatid-Chromosomen Zwei-Chromatid-Chromosomen Anzahl an Chromosomen bei Eukaryoten: - in der Regel geradzahlig - artspezifisch (z.B. Mensch: 46, Katze 38, Tomate 24)
16	Zellzyklus und Mitose	Zellen durchlaufen mehrere Male den Zellzyklus G1-Phase: Zellwachstum, Stoffwechsel S-Phase: DNA-Replikation G2-Phase: Zellwachstum, Vorbereitung auf Kernteilung (Mitose) Mitose: - Prophase: Aufspiralisierung und Verdichtung der Zwei-Chromatid-Chromosomen - Metaphase: Anordnung der Zwei-Chromosomen in der Äquatorialebene; Ausbildung des Spindelapparats - Anaphase: je 1 Ein-Chromatid-Chromosom wird zu den Zellpolen gezogen - Entspiralisierung der Ein-Chromatid-Chromosomen und Beginn der Zellteilung Zellteilung Ergebnis: 2 Körperzellen, genetisch identisch
		EIBERIUS. 7 VOI heizerreii, Reiterisch ineuringen

17	Karyogramm des Menschen	X >> X
		(
		JC JC JC JC 13 14 15 16 17 18
		11 15 24 37 54
		19 20 21 22 X/Y https://upload.wikimedia.org/wikipedia/commons/2/21/DNA_human_male_chromosomes.gif - alle 46 Chromosomen einer Zelle geordnet - Zustand: Zwei-Chromatid-Chromosomen; diploid - jeweils 2 homologe Chromosomen nebeneinander
		- 22 Paare Autosomen
		- 1 Paar Gonosomen (Männer: XY; Frauen: XX) - jeweils eines der homologen Chromosomen stammt von der
		Mutter, eines vom Vater
18	Meiose	- spezielle Kernteilung bei der Bildung von Keimzellen (Spermienzellen und Eizellen) - Reduktion des diploiden Chromosomensatzes (2n)
		- Bildung haploider Keimzellen (1n)
		- zufällige Neuverteilung der elterlichen Chromosomen
19	Ablauf der Meiose	2 Zellteilungen hintereinander:
		Meiose I = Reduktionsteilung Homologe Chromosomen ordnen sich in der
		Äquatorialebene an und werden getrennt (2n → 1n)
		Meiose II = Äquationsteilung
		Zwei-Chromatid-Chromosomen werden zu Ein-Chromatid-Chromosomen getrennt (1n)
		Em-Chiomatid-Chiomosomen getternit (111)
		Ergebnis: 4 Keimzellen, genetisch verschieden
20	Bedeutung der geschlechtlichen Fortpflanzung und Meiose	Zufällige Neukombination von genetischem Material: - zufällige Neuverteilung der elterlichen Chromosomen - zufälliges Aufeinandertreffen von Ei- und Spermienzelle → Nachkommen eines Elternpaares sind zu den Eltern und untereinander verschieden, neue Merkmalskombinationen → höhere Überlebenschancen bei sich ändernden Umweltbedingungen
21	Verteilungsfehler bei der Meiose	 Nichtteilung (Non-Disjunction) bei einzelnen Chromosomen oder homologen Paaren in der Meiose I oder II es entstehen Keimzellen, die 1 Chromosom zu viel oder zu wenig haben Beispiel: Trisomie 21 oder Down-Syndrom (3 x Chromosom 21)

		- Beeinträchtigung: je nach Chromosom ist das Kind nicht lebensfähig oder kann nur wenige Beeinträchtigungen haben
22	Pränatale Diagnostik	Methoden, um vorgeburtliche Untersuchungen des Kindes vorzunehmen; nicht-invasive Methoden: Ultra-Schall, Bluttest auf chromosomale Abweichungen invasive Methoden: Fruchtwasseruntersuchung, Nabelschnur-Punktion → Entnahme von Zellmaterial des Fötus und Erstellung eines Karyogramms
23	Gentechnik	 = künstliche Veränderung des Erbguts einer Zelle z.B. durch das Einbringen fremden genetischen Materials; Ziel: Eigenschaften verändern Anwendungsbereiche: Grüne Gentechnik: Ertragssteigerung, Fraßschutz, Resistenzen bei Pflanzen Rote Gentechnik: in Medizin z.B. Herstellung von Medikamenten, Gentherapie Weiße Gentechnik: in Industrie z.B. Bakterien für Abwasserreinigung

III. Evolution

24	Belege der Evolution	Fossilien sind Belege für Lebewesen, die vor sehr langer Zeit auf der Erde lebten → ermöglichen zeitliche Einblicke in die Stammesgeschichte (Dokumente der Evolution) Brückentiere stellen Verbindungen zwischen zwei Tiergruppen her (z.B. Archaeopteryx weist Merkmale heutiger Reptilien und Vögel auf)
25	Mechanismen der Evolution	Genetische Variabilität durch Mutation (spontane Veränderung des Erbguts) und Rekombination (sexuelle Fortpflanzung, d.h. zufällige Verteilung der homologen Chromosomen während der Meiose, Neukombination des Erbguts bei der Befruchtung) → neue Merkmalskombinationen möglich → bessere Angepasstheit → höhere Überlebenschance → Selektion (natürliche Auslese)
26	Erweiterte Evolutionstheorie	Schema: - erbliche Variabilität (durch Mutation und Rekombination) - Überproduktion an Nachkommen - begrenzte Ressourcen - veränderte Umweltbedingungen bedingen Kampf ums Überleben ("struggle for life") - die besser angepassten Individuen überleben bzw. pflanzen sich bevorzugt fort ("survival of the fittest") - sie geben ihre Merkmale an die Nachkommen weiter (= natürliche Selektion) → langfristig Wandel der Arten

27	Selektionsfaktoren	- <u>abiotisch</u> z.B. Temperatur, Feuchtigkeit, O ₂ -Gehalt, Licht - <u>biotisch</u> z.B. Fressfeinde, Beutetiere, Geschlechtspartner
28	Artwandel, Artbildung	z.B. durch geographische Isolation Population (Gruppe von Individuen derselben Art) wird räumlich getrennt (durch Gebirgszug, Fluss, Gletscher) → Vermischung der Gene zwischen zwei Teilpopulationen wird unterbrochen → verschiedene Evolutionsfaktoren führen bei Teilpopulationen zu genetischen Veränderungen → können sich nicht mehr untereinander fortpflanzen → 2 neue Arten entstehen
29	Biologischer Artbegriff	Lebewesen, die sich untereinander fortpflanzen und dabei fruchtbare Nachkommen erhalten, gehören zu einer Art

IV. Biodiversität bei Wirbellosen – Variabilität und Angepasstheit

30	Aktive Bewegung	Bei Insekten: - gegliedertes Außenskelett aus Chitin - mehrgliedrige Beine (3 Paare) mit innenliegenden Muskeln und Sehnen (Strecker-Beuger/Gegenspielerprinzip) - Angepasstheit an Umweltbedingungen: Laufbeine, Schwimmbeine, Sprungbeine, Sammelbein, etc In der Luft durch Flügel → indirekte/direkte Flugmuskulatur bei Ringelwürmern - Hydroskelett bzw. Hautmuskelschlauch aus Ring- und Längsmuskulatur
31	Tracheenatmung bei Insekten	stark verzweigtes System aus immer kleiner werdenden Röhren, den Tracheen, das den ganzen Körper durchzieht → passive Sauerstoffwanderung (Diffusion) überwiegt
32	Offener Blutkreislauf	Blut- bzw. Körperflüssigkeit (Hämolymphe) umspült Organe und Muskeln → muskulöses Rückengefäß übernimmt Pumpfunktion
33	Mundwerkzeuge bei Insekten	Angepasstheit an verschiedene Nahrungsquellen: z.B. kauendbeißend bei Heuschrecken, beißend-leckend-saugend bei Bienen
34	Bedeutung der Insekten für den Menschen	 Bestäubungsleistung Destruenten Bedeutung für Stabilität von Ökosystemen Krankheitserreger "Schädlinge" und "Nützlinge"

35	Fortpflanzung und Entwicklung bei Insekten	Allmähliche Metamorphose: Larven (nicht geschlechtsreif) werden mit jeder Häutung den Elterntieren (geschlechtsreife Imago) ähnlicher, z.B. bei Heuschrecken, Schaben, Wanzen Vollkommene Metamorphose:
		Larven (z.B. Raupen, Engerling) verwandeln sich nach der letzten Larvenhäutung durch das Puppenstadium zur Imago (z.B. Schmetterling, Maikäfer) → Hormone steuern die Entwicklung
36	Nervensysteme	Bauchseitiges Strickleiternervensystem, paariges Oberschlundganglion im Kopf und verbundene Nervenknoten (Ganglien) in den Segmenten (z.B. Ringelwürmer, Gliederfüßer) → zunehmende Zentralisation im Laufe der Evolution
37	Sinnesorgane	Komplex- bzw. Facettenaugen: mehrere tausend sechseckige Einzelaugen nehmen Ausschnitte der Umgebung auf Antennen mit vielen Sinneszellen an der Oberfläche; Weitere Sinne: → Geruchs- und Geschmackssinn, Wahrnehmung von Luftschwingungen, Druck, Lage im Flug
38	Kommunikation	inner- und zwischenartlich, z.B. durch Leuchtsignale, Pheromone, taktile Reize Besonderheiten: Mimese, Mimikry Bei Honigbiene: Schwänzeltanz

V. Das Ökosystem Boden

39	Horizontbildung	Physikalische und chemische Verwitterung des Ausgangsgesteins (mechanische Zerkleinerung) → Pflanzenwurzeln erweitern Lücken → Luft- und Wasserspeicher → Stoffwechselvielfalt der Bodenorganismen (Bakterien, Pilze, Mikroorganismen, verschiedene Wirbellose) reichert den Boden mit Humus (fein zersetzte, organische Bodensubstanz) und Mineralsalzen (Ammonium-, Nitrat-, oder Phosphatsalze) an → Bodenfruchtbarkeit
40	Nahrungsketten und –netze	Produzenten (Pflanzen): speichern Biomasse durch Fotosynthese (produzieren organische Stoffe) Konsumenten (Pflanzen- und Fleischfresser): betreiben Zellatmung Destruenten (Bodenorganismen): liefern Mineralsalze (anorganische Stoffe)
41	Einflüsse des Menschen auf den Boden	z.B. Bodenerosion, Überdüngung, Pestizide, Bodenverdichtung, etc.